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Abstract

The ability to distinguish existing memories from similar perceptual experiences is a

core feature of episodic memory. This ability is often examined using the mnemonic

similarity task in which people discriminate memories of studied objects from percep-

tually similar lures. Studies of the neural basis of such mnemonic discrimination have

mostly focused on hippocampal function and connectivity. However, default mode

network (DMN) connectivity may also support such discrimination, given that the

DMN includes the hippocampus, and its connectivity supports many aspects of epi-

sodic memory. Here, we used connectome-based predictive modeling to identify

associations between intrinsic DMN connectivity and mnemonic discrimination. We

leveraged a wide range of abilities across healthy younger and older adults to facili-

tate this predictive approach. Resting-state functional connectivity in the DMN

predicted mnemonic discrimination outside the MRI scanner, especially among

prefrontal and temporal regions and including several hippocampal regions. This pre-

dictive relationship was stronger for younger than older adults, primarily for

temporal–prefrontal connectivity. The novel associations established here are consis-

tent with mounting evidence that broader cortical networks including the hippocam-

pus support mnemonic discrimination. They also suggest that age-related network

disruptions undermine the extent that the DMN supports this ability. This study

provides the first indication of how intrinsic functional properties of the DMN

support mnemonic discrimination.
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1 | INTRODUCTION

Encoding and retrieving everyday events allows people to relive past

experiences and plan future behaviors. Because people experience

countless overlapping events across their lifetimes, they must be able

to distinguish existing memories from sensory inputs. For example,

someone could leave the table during dinner and return to find a

similar glass that is not theirs. One way they could avoid drinking from

the similar glass is to discriminate it from their memory for the original

glass. The subsequent interference created by such feature similarities

can be mitigated when one encodes the inputs (i.e., the glasses) as dis-

tinct representations. Such encoding would allow one to avoid future

confusion about the ownership of both glasses because the unique

features of each would be represented with distinguishing associative
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information. This example of interference reduction may be accom-

plished by a hippocampal computation referred to as pattern separa-

tion that is enabled by the orthogonalization of overlapping inputs

(Norman & O'Reilly, 2003; O'Reilly & McClelland, 1994; Yassa &

Stark, 2011). Evidence for pattern separation computations has been

inferred from studies showing that hippocampal function and struc-

ture predicts mnemonic discrimination (for a review, see Stark

et al., 2019).

Substantial evidence for this relationship has been observed using

modified recognition memory paradigms, such as the Mnemonic Simi-

larity Task (MST; for a review, see Stark et al., 2019). In the object var-

iant of the MST, participants study everyday objects (e.g., a glass) and

complete a memory test comprising exact repetitions of studied

objects (e.g., the same glass) and lures that are similar but not identical

to studied objects (e.g., a shorter glass). Mnemonic discrimination

occurs when lures are identified as similar but not identical to studied

objects. Functional magnetic resonance imaging (fMRI) studies show

that such discrimination reliably evokes activity in hippocampal sub-

fields (e.g., dentate gyrus and CA3) in paradigms in which the similarity

among materials during study and test is manipulated for objects and

scenes (Bakker et al., 2008; Berron et al., 2016; Kirwan & Stark, 2007;

LaRocque et al., 2013), spatial information (Azab et al., 2014; Reagh

et al., 2014), and temporal intervals (Azab et al., 2014).

Although most studies of the neural correlates of mnemonic dis-

crimination have focused on the role of hippocampal subfields, there

is mounting evidence that cortical regions are also involved

(Bowman & Dennis, 2016; Motley & Kirwan, 2012; Reagh et al., 2014,

2018; Wais et al., 2017). Recent fMRI studies have begun to charac-

terize activation outside the hippocampus that supports mnemonic

discrimination by examining whole-brain activity during the MST. For

example, functional connectivity from the hippocampus to bilateral

temporal regions as well as the cerebellum and frontal and temporal

cortex has been shown during mnemonic discrimination (Paleja

et al., 2014). Other work has shown that activation in hippocampus as

well as prefrontal and occipital cortex was associated with mnemonic

discrimination (Pidgeon & Morcom, 2016), with the latter suggesting

contributions of visual information that are not directly involved in

discrimination (also see, Klippenstein et al., 2020). Further, brain activ-

ity during mnemonic discrimination has been shown in regions of the

default mode network (DMN; Raichle, 2015), including the precuneus

and angular gyrus (Nash et al., 2021), that is coupled with hippocam-

pal activation during mnemonic discrimination. Finally, inactivation of

anterior DMN regions (e.g., medial prefrontal cortex) in rodents

impairs mnemonic discrimination (Johnson et al., 2021). These studies

suggest that regional DMN connectivity may support mnemonic

discrimination.

This suggestion is also supported by studies showing that epi-

sodic memory performance is associated with task-related activity in

DMN regions. Such activation has been observed in regions including

the precuneus, angular gyrus, temporopolar cortex, and medial pre-

frontal cortex (Kim, 2016; Sestieri et al., 2011). These regions of the

DMN have also been shown to operate with the hippocampus, a

core structure involved in mnemonic discrimination, during episodic

memory retrieval (Huijbers et al., 2011). Although there is not a uni-

versal consensus that the hippocampus is formally part of the DMN

(Raichle, 2015), it is densely interconnected with many DMN regions

that support episodic memory (Ranganath & Ritchey, 2012).

A role for DMN connectivity in mnemonic discrimination ability

may be identified by examining how intrinsic functional connectivity

at rest predicts task performance. Such brain-behavior relationships

are suitable for this purpose because they identify which networks

support specific cognitive functions (Stevens & Spreng, 2014) and are

consistent with the functional network architecture revealed during

tasks (Cole et al., 2014). This consistency between resting-state and

task-related approaches inspired the view that task-evoked activity

over intrinsic brain networks is a mechanism that supports cognitive

operations (e.g., Cole et al., 2016). Accordingly, intrinsic DMN connec-

tivity associated with episodic memory (Andrews-Hanna et al., 2010;

Spreng & Grady, 2010) may support mnemonic discrimination. This

may occur when such functional neural architecture enables a recall-

to-reject mechanism (Norman & O'Reilly, 2003) to access stored rep-

resentations and compare them with sensory inputs. From this view,

the connectivity among episodic memory regions should mediate

mnemonic discrimination to the extent that they support access to

high-fidelity memory representations.

If intrinsic DMN connectivity supports mnemonic discrimination,

then this relationship should also be observed across a wide range of

performance. One way to test this assertion is to examine whether this

association occurs across people from groups that consistently differ in

mnemonic discrimination, such as healthy younger and older adults

(e.g., Stark et al., 2013). Testing people across age groups thus enables

examination of a key source of variability in mnemonic discrimination

ability. Age-related mnemonic discrimination deficits have been linked

to hyperactivity in the hippocampus (Bakker et al., 2012; Reagh

et al., 2018; Yassa, Lacy, et al., 2011; Yassa, Mattfeld, et al., 2011),

hypoactivity in MTL cortical regions (Bakker et al., 2012; Reagh

et al., 2018), and dysfunctional connectivity between anterior hippo-

campus and parahippocampal cortex (Stark et al., 2021). These findings

suggest that network-level perturbations in aging may extend beyond

the MTL into networks supporting memory, such as the DMN.

An ideal method for examining the association between intrinsic

functional connectivity of the DMN and mnemonic discrimination is

connectome-based predictive modeling (CPM; Shen et al., 2017).

CPM is a data-driven, cross-validation approach that builds a

connectome associated with a specific behavior (e.g., mnemonic

discrimination). A connectome is a set of functionally connected

regions of interest (ROIs) used to predict the behavior of novel partici-

pants. CPM is favored over many related approaches, partly because

it effectively predicts behavior using the connectivity between all

ROIs without hypotheses about which connections will contribute

(Shen et al., 2017). CPM has been used to identify whole-brain con-

nectivity patterns at rest and during tasks that measure fluid intelli-

gence (Finn et al., 2015), attentional control (Rosenberg et al.,

2016, 2018), creative ability (Beaty et al., 2018), and personality (Hsu

et al., 2018). It has also been used to characterize aspects of older

adults' cognition (Fountain-Zaragoza et al., 2019). Together, this
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nascent literature suggests that the CPM approach is well-suited to

explore the extent that intrinsic functional connectivity in DMN

regions predicts a wide range of mnemonic discrimination abilities.

1.1 | The present study

Our overarching goal was to characterize associations between intrin-

sic functional DMN connectivity and mnemonic discrimination for the

first time. The recent introduction of CPM affords a unique opportu-

nity to characterize such associations using a method that could even-

tually generalize to predict behaviors in other data sets. Participants

first provided resting-state fMRI data and, outside the scanner, com-

pleted an object-based MST (Stark et al., 2013) followed by a percep-

tual discrimination task (PDT). Including both tasks enabled the

isolation of relationships between neural activation and mnemonic

processes in the following aims.

Our primary aim was to provide the first characterization of the

association between intrinsic DMN connectivity and mnemonic dis-

crimination using the CPM approach. Consistent with studies showing

that the functional architecture of brain networks is comparable in

resting and task states (Cole et al., 2014, 2016), previous work using

CPM has demonstrated that resting state connectomes are associated

with task-based connectomes (Rosenberg et al., 2016). Given the find-

ings above indicating that intrinsic DMN connectivity is associated

with episodic memory, we expected that DMN connectivity would

predict mnemonic discrimination. Our rationale is that mnemonic dis-

crimination can be accomplished when similar lures trigger episodic

retrievals of and comparisons with representations of studied objects.

As described above, this processing sequence can unfold when partic-

ipants deploy a recall-to-reject strategy meditated by hippocampal

operations (Norman & O'Reilly, 2003).

To further connect with studies examining hippocampal contribu-

tions to mnemonic discrimination in the MST (for a review Stark

et al., 2019), we included in the CPM distinct regions for the hippo-

campal head, body, and tail. Our exploratory aim here was to deter-

mine if predictive inter-region connections differed along the

hippocampal longitudinal axis. Our approach was inspired by findings

showing that anterior and posterior regions are differentially associ-

ated with encoding and retrieval processes (Hrybouski et al., 2019) as

well as memory for gist and item-specific information (Poppenk

et al., 2013), respectively. We were also inspired by the view that cor-

tical regions supporting memory for items and their context are differ-

entially connected with anterior and posterior hippocampal regions

(for a review, see Ranganath & Ritchey, 2012). Additionally, some evi-

dence suggests that anterior and posterior hippocampus may be dif-

ferentially vulnerable in aging, though there are somewhat conflicting

results about whether anterior (Stark et al., 2021) or posterior

(Damoiseaux et al., 2016; Reagh et al., 2020) hippocampal regions

show more pronounced age-related change. Despite these differential

associations across hippocampal regions, the absence of prior work

applying CPM to episodic memory abilities precludes theoretically

motivated a priori hypotheses about how connectivity profiles may

differ across those regions. Therefore, we report the first characteriza-

tion of such profiles below and consider the implications of such con-

nectivity further in the Discussion.

Our secondary aim was to examine whether the extent to

which DMN connectivity predicts mnemonic discrimination differs

between younger and older adults. Older adults consistently

show impaired mnemonic discrimination (for a review, see Stark

et al., 2019) and weakened intrinsic DMN connectivity associated

with episodic memory deficits (Andrews-Hanna et al., 2007;

Staffaroni et al., 2018). Consequently, weaker intrinsic DMN

connectivity in older adults may undermine the extent that DMN

connections predict their mnemonic discrimination ability in the

CPM. We therefore hypothesized that intrinsic DMN connectivity

in the CPM would predict mnemonic discrimination more strongly

for younger than older adults.

2 | METHOD

The study was approved by the University of North Carolina at

Greensboro (UNCG) Institutional Review Board.

2.1 | Participants

The participants were 36 younger and 36 older adults from the

greater Greensboro, North Carolina community. They were right-

handed and had no recent history of neurological problems. The stop-

ping rule was to collect usable data from at least 25 participants per

age group. This sample size is comparable to research examining asso-

ciations between functional connectivity and mnemonic discrimina-

tion in younger and older adults (Stark et al., 2021). We excluded one

younger and one older adult scoring below 26 on the Montreal Cogni-

tive Assessment (MoCA; Nasreddine et al., 2005). We also excluded

one younger adult for excessive movement in the scanner, five older

adults for responding on fewer than 70% of the MST trials, and two

older adults for not following instructions. The final sample included

34 younger adults (18–32 years old, Mage = 22.21, SD = 3.65;

20 female) and 28 older adults (61–80 years old, Mage = 69.82,

SD = 5.64; 20 female). Table 1 shows that younger and older adults

had comparable education and working memory capacity, the latter

measured by forward and backward digit span (Wechsler, 1997).

Older adults had higher vocabulary scores (Zachary & Shipley, 1986)

and slower processing speed (Hedden et al., 2002) than younger

adults.

2.2 | Behavioral tasks

Participants were tested individually in a quiet room. An experimenter

explained the instructions before each task and then allowed partici-

pants to complete the task alone. Stimuli were presented electroni-

cally using E-Prime 3.0 software (2016) on a PC laptop that included a
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13.3 in (33.78 cm) display (1920 � 1080 resolution). The viewing dis-

tance was approximately 20 in (51 cm). Images of everyday objects

(400 � 400 pixels) were from a publicly available database (https://

github.com/celstark/MST). The materials, anonymized data files, and

analysis scripts for the behavioral tasks are available on the Open Sci-

ence Framework (OSF): https://osf.io/f6vg8/.

2.2.1 | Mnemonic similarity task

Participants first completed a version of the object-based MST

(Figure 1a) that included separate study and test phases. During study,

pictures of everyday objects appeared in the center of the display

against a white background for 2000 ms each. Participants pressed a

key to indicate if the object belonged indoors (v) or outdoors (n). At

test, participants viewed three object types for 2000 ms each. Test

objects repeated studied objects exactly (repeated objects), were simi-

lar but not identical to studied objects (similar lures), or had not

appeared during study (novel foils). Participants pressed a key to clas-

sify repeated objects as “old” (v), similar lures as “similar” (b), and

novel foils as “new” (n). Objects appeared in random order in each

phase.

Each participant viewed 72 study objects and 108 test objects.

The test included 36 repeated objects, 36 similar lures, and 36 novel

foils. These object type conditions included fewer items than is typi-

cally used in the MST; however, performance on key measures has

been shown to be consistent with even fewer items (i.e., 16 per condi-

tion; Stark et al., 2015). For all object types, each 36-object set com-

prised 12 objects from each of the three “lure bin” sets that created

the greatest challenge for mnemonic discrimination by including the

most confusable lures (i.e., bins 1–3). Lure bins are pre-established

object groupings based on probabilities of misclassifying similar lures

TABLE 1 Demographic information and cognitive ability scores for younger and older adults

Younger Older t p Cohen's d

Years of education 15.85 (2.50) 15.75 (2.29) 0.17 .867 0.04

Vocabulary 29.03 (3.97) 33.64 (3.12) 5.01 <.001 1.29

Processing speed 78.26 (13.27) 63.36 (12.58) 4.51 <.001 1.15

Digit span (forward) 8.71 (2.14) 8.00 (2.09) 1.31 .196 0.33

Digit span (backward) 7.38 (2.22) 6.82 (1.74) 1.09 .280 0.28

MoCA 28.26 (1.42) 27.68 (1.39) 1.63 .108 0.41

Note: Means and standard deviations (in parentheses) are displayed above. Vocabulary was quantified via the Shipley vocabulary test; processing speed

was quantified via the digit comparison task; digit span scores were measured via tasks included in the Wechsler Memory Scales.

F IGURE 1 Schematics of behavioral tasks. (a) In the mnemonic similarity task, participants studied pictures of objects and took a modified
recognition test in separate phases. The test included repeated objects that were repeated from the study phase, similar lures that were alternative
versions of other objects from the study phase, and novel foils that only appeared in the test phase. During study, participants indicated whether
each object belonged indoors or outdoors. At test, participants indicated whether objects were old, similar, or new. (b) In the perceptual
discrimination task, two objects appeared side-by-side on each trial. Some pairs included pictures of the exact object (repeated objects), others
included similar versions of the same object (similar lures), and another set included different objects (novel objects). Participants indicated whether
pairs included the same, similar, or different objects
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as repeated objects, with lower-numbered bins indicating more of

such false alarm errors (Stark et al., 2013). These error rates were

equated across sets. For counterbalancing, sets were rotated through

conditions, creating three experimental formats.

Note that the combination of shorter lists and more confusable

lures relative to some variants of the MST using object stimuli could

have offsetting effects on levels of mnemonic discrimination scores.

The shorter study list here compared to earlier studies could have led

to better recognition of studied objects via a list-length effect occur-

ring when shorter lists improve memory (for a review, see Gillund &

Shiffrin, 1984). Such improved recognition could also have supported

a recall-to-reject strategy of similar lure identification. However, list-

length effects are not universal and are absent when stimulus features

support interitem discriminability (e.g., Kinnell & Dennis, 2012). Also,

including only the most confusable lures here should challenge the

comparison process of the recall-to-reject strategy, thus reducing

mnemonic discrimination. These offsetting influences suggest that the

observed mnemonic discrimination scores reported below could be

higher than, comparable to, or lower than scores in other studies. But

the exact balance of these influences can only be determined via an

experimental comparison that we did not conduct here. Regardless of

how the present paradigm compares to others, it effectively served as

a time-efficient task with an ideal range of performance for CPM ana-

lyses (see below).

2.2.2 | Perceptual discrimination task

After the MST, participants completed the PDT (Figure 1b). The PDT

was included to account for perceptual ability in mnemonic discrimi-

nation differences (see Davidson et al., 2019). The PDT included dif-

ferent objects than the MST to prevent cross-task contamination.

Normative false alarm error rates for similar lure objects were equated

across the tasks to control for stimulus effects. Participants were

instructed to classify relationships within pairs. Two objects appeared

together on each trial until participants responded. Repeated Objects

included identical objects (e.g., same potted plant); Similar Objects

included two similar but not identical versions of the same object

(e.g., similar planners); and Novel Objects included objects with differ-

ent identities (e.g., saxophone and wallet). Participants pressed a key

to classify pairs as comprising the “same” objects (v), “similar” objects
(b), or “different” objects (n), for repeated objects, similar lures, and

novel objects, respectively. Pairs appeared in random order. There

were 90 total pairs (36 repeated objects, 36 similar lures, and 18 novel

objects). For counterbalancing, object sets were rotated through con-

ditions, creating three experimental formats.

2.2.3 | Statistical approach for assessing behavioral
task performance

The analytic approach for the MST followed prior studies in that

response probabilities for each object type and bias-corrected

mnemonic discrimination and traditional recognition indices are

reported (Stark et al., 2019). The mnemonic discrimination index,

referred to as the Lure Discrimination Index (LDI), was calculated as

the difference in “similar” responses to lures and foils: pjsimilar (lures–

foils). In addition, the traditional recognition index was calculated as

the difference in “old” responses to repetitions and foils: pjold (repeti-

tions–foils). The analytic approach for the PDT is comparable in that

response probabilities and a bias-corrected index of perceptual dis-

crimination are reported. A perceptual discrimination index was calcu-

lated as the difference in similar responses between similar object

pairs and novel object pairs: pjsimilar (pairs with similar objects–pairs

with novel objects). All analyses of behavioral performance were con-

ducted using R software (R Core Team, 2020). Pairwise comparisons

of the bias-corrected measures for younger and older adults were

conducted using the emmeans function from the emmeans package

(Lenth, 2018). Analysis scripts are available on the OSF: https://osf.

io/f6vg8/. The level for significance was set at α = 0.05.

2.3 | fMRI data acquisition and preprocessing

Before completing the behavioral tasks, but after completing the neu-

ropsychological measures, whole-brain imaging was performed on a

Siemens 3.0T Tim Trio MRI Scanner using a 16-channel head coil at

the Gateway MRI Center at UNCG. High-resolution anatomical

images were acquired with a multi-planar rapidly acquired gradient

echo (MP-RAGE) sequence (192 sagittal slices, 1 mm thickness,

TR = 2300 ms, TE = 2.26 ms, 1.0 mm isotropic voxels). Resting-state

functional data were collected after the anatomical scan. Resting-state

data comprised 300 measurements collected over one 10-min run.

This scan duration produces reliable functional connectivity estimates

within and across participants (Shah et al., 2016). Participants were

instructed to remain still and awake with their eyes open. No stimuli

appeared during this scan, and the display was black. Functional scans

were collected using an echo-planar image sequence sensitive to

blood-oxygen-level-dependent (BOLD) contrast (T2*; 32 slices with

4.0 mm thickness and no skip, TE = 30 ms, TR = 2000 ms, flip

angle = 70, FOV = 220 mm, matrix size = 74 � 74 � 32 voxels, A/P

phase encoding direction). Slices were collected in a descending order

that covered the entire cortex and partial cerebellum. At the beginning

of the resting-state scan, the scanner acquired and discarded two

dummy scans. These structural and resting-state fMRI data are avail-

able on OpenNeuro: https://openneuro.org/datasets/ds003871/

versions/1.0.2.

Data were preprocessed with the default preprocessing pipeline

in the CONN functional connectivity toolbox (Whitfield-Gabrieli &

Nieto-Castanon, 2012) used in conjunction with SPM12 (Wellcome

Trust Centre for Neuroimaging, London, UK; www.fil.ion.ucl.ac.uk/

spm). This pipeline is described here (https://web.conn-toolbox.org/

fmri-methods/preprocessing-pipeline) and is summarized in what fol-

lows. Within this pipeline, images are (1) realigned to correct for

motion, (2) slice-time corrected, and (3) undergo outlier identification

using custom artifact detection software (http://www.nitrc.org/
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TABLE 2 MNI coordinates of Tian and Schaefer Atlases

Atlas Hemisphere ROI Alphanumeric code

MNI coordinates

NeuroSynth locationsX Y Z

Tian Left Hippocampal head LH head �23 �14 �20 Hippocampus

Tian Right Hippocampal head RH head 25 �14 �20 Hippocampus

Tian Left Hippocampal body LH body �28 �28 �10 Hippocampus

Tian Right Hippocampal body RH body 30 �28 �10 Hippocampus

Tian Left Hippocampal tail LH tail �22 �38 �2 Hippocampus

Tian Right Hippocampal tail RH tail 24 �38 �2 Hippocampus

Schaefer Left Ventral prefrontal LH PFCv 1 �35 20 �13 Insula

Schaefer Left Ventral prefrontal LH PFCv 2 �32 42 �13 Orbitofrontal

Schaefer Left Ventral prefrontal LH PFCv 3 �46 31 �7 Inferior frontal gyrus

Schaefer Left Ventral prefrontal LH PFCv 4 �52 22 8 Inferior frontal gyrus

Schaefer Right Ventral prefrontal RH PFCv 1 51 28 0 Insula

Schaefer Left Medial prefrontal LH PFCm 1 �6 36 �10 Ventromedial prefrontal

Schaefer Left Medial prefrontal LH PFCm 2 �12 63 �6 Orbitofrontal

Schaefer Left Medial prefrontal LH PFCm 3 �6 44 7 Anterior cingulate

Schaefer Right Medial prefrontal RH PFCm 1 8 42 4 Anterior cingulate

Schaefer Right Medial prefrontal RH PFCm 2 6 29 15 Anterior cingulate

Schaefer Right Medial prefrontal RH PFCm 3 8 58 18 Medial prefrontal

Schaefer Left Dorsal prefrontal LH PFCd 1A �24 25 49 —

Schaefer Left Dorsal prefrontal LH PFCd 1B �8 59 21 Medial prefrontal

Schaefer Left Dorsal prefrontal LH PFCd 2 �11 47 45 Medial prefrontal

Schaefer Left Dorsal prefrontal LH PFCd 3 �3 33 43 Medial prefrontal

Schaefer Left Dorsal prefrontal LH PFCd 4 �9 17 63 Presupplementary

Schaefer Right Dorsal prefrontal RH PFCd 1A 29 30 42 —

Schaefer Right Dorsal prefrontal RH PFCd 1B 15 46 44 Medial prefrontal

Schaefer Left Temporal LH Temp 1 �47 8 �33 Anterior temporal

Schaefer Left Temporal LH Temp 2 �60 �19 �22 Lateral temporal

Schaefer Left Temporal LH Temp 3 �56 �6 �12 Superior temporal

Schaefer Left Temporal LH Temp 4 �58 �30 �4 Middle temporal

Schaefer Right Anterior temporal RH AntTemp 1 47 13 �30 Anterior temporal

Schaefer Right Temporal RH Temp 1 63 �27 �6 Superior temporal

Schaefer Left Parahippocampus LH PHC 1 �26 �32 �18 Parahippocampus

Schaefer Right Parahippocampus RH PHC 1 28 �36 �14 Parahippocampus

Schaefer Left Retrosplenial LH Rsp 1 �11 �56 13 Retrosplenial

Schaefer Right Retrosplenial RH Rsp 1 12 �55 15 Retrosplenial

Schaefer Left Posterior cingulate LH PCC 1 �5 �55 27 Posterior cingulate

Schaefer Left Posterior cingulate LH PCC 2 �4 �31 36 Posterior cingulate

Schaefer Left Posterior cingulate LH PCC 3 �6 �54 42 Precuneus

Schaefer Right Posterior cingulate RH PCC 1 7 �49 31 Posterior cingulate

Schaefer Left Inferior parietal LH IPL 1A �46 �66 38 Angular gyrus

Schaefer Left Inferior parietal LH IPL 1B �57 �54 28 Angular gyrus

Schaefer Left Inferior parietal LH IPL 1C �39 �80 31 Angular gyrus

Schaefer Right Inferior parietal RH IPL 1A 54 �50 28 Angular gyrus

Schaefer Right Inferior parietal RH IPL 1C 47 �69 27 Angular gyrus

Note: The MNI coordinates correspond to the center mass for each ROI. The alphanumeric codes are the labels for the coordinates in the atlases that also

appear in Figure 5. The NeuroSynth locations were extracted from the associations with meta-analysis maps.
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projects/artifact_detect) that detects outlier time points for each par-

ticipant. Outlier scans are identified from the observed global BOLD

signal and participant motion in the scanner. Following recommended

conservative parameters for examining associations between DMN

connectivity and age differences in behavior (Hughes et al., 2019), vol-

umes were excluded if the signal for that time point fell three standard

deviations outside the mean global signal for the entire run or if the

scan-to-scan head motion exceeded 0.5 mm in any direction. Note

that this software takes both scan-to-scan head motions and rotations

into account when estimating composite motion (similar to framewise

displacement).

Following outlier identification, images were normalized to the

MNI template, resampled to 3 mm isotropic voxels, and smoothed

using an 8 mm FWHM isotropic Gaussian kernel. This smoothing pre-

cludes biases associated with spatial registration to a template across

age groups (e.g., Zebrowitz et al., 2018). While smoothing to 8 mm

may not be ideal for hippocampal long-axis dissociations, this is not an

unusually large kernel (cf. Prze�zdzik et al., 2019; Thavabalasingam

et al., 2019; Wagner et al., 2016). Moreover, consistency in template

coregistration across the entire sample was a greater priority for these

analyses than minimizing smoothing kernel size.

The preprocessed data were then subjected to the default den-

oising pipeline within CONN described here: https://web.conn-

toolbox.org/fmri-methods/denoising-pipeline. This pipeline consists

of a linear regression of potential confounding effects in the BOLD

signal and temporal band-pass filtering. Potential confounding effects

include noise components from cerebral white matter and cerebrospi-

nal areas (Chai et al., 2012), estimated motion parameters identified

during the realignment step of preprocessing, outlier scans from out-

lier identification (i.e., scrubbing; Power et al., 2014), and constant and

first-order linear session effects (Whitfield-Gabrieli & Nieto-

Castanon, 2012). This approach preserves valid positive functional

connectivity estimates while controlling for the inflation of negative

estimates and regresses out physiological noise from areas of non-

interest (e.g., white matter; see Chai et al., 2012). The residual time

series was then band-pass filtered in the 0.008–0.08 Hz range.

Stable correlations can be computed from resting-state functional

data using around 5 min of cleaned data (Power et al., 2014; Van Dijk

et al., 2010). One younger adult was excluded for not meeting this

threshold. The analyzed sample (34 younger and 28 older adults)

showed patterns typical in research on age-related connectivity differ-

ences (e.g., Hughes et al., 2019). There were more outliers scans for

older adults (M = 34.71, SD = 29.15) than younger adults (M = 19.47,

SD = 20.31), t(60) = 2.42, p = 0.02, d = 0.61. After removing these

scans, younger adults retained an average of 9.36 / 10 minutes

(SD = 0.67) and older adults retained an average of 8.84/10 min

(SD = 0.97) of data. The final sample included enough data to calcu-

late stable resting-state correlations (Power et al., 2014; Van Dijk

et al., 2010), thus mitigating concerns about analysis results being

skewed by age differences in outlier scans.

Functional connectivity matrices were calculated across the time

series using Fisher's z coefficients between 200 cortical ROIs isolated

using the Schaefer parcellation based on the MNI template (Schaefer

et al., 2018) and eight hippocampal regions (left and right medial and

lateral head, left and right body, and left and right tail) extracted from

the Melbourne Subcortex Atlas using the 2 mm group parcellation

(Tian et al., 2020). Because there was no a priori reason to include

medial and lateral hippocampal head ROIs, the medial and lateral hip-

pocampus Fisher's z coefficients were averaged for left and right

hemisphere. All z coefficient values were then transformed to

(a) (b) (c)

F IGURE 2 Behavioral task performance. (a) Mnemonic discrimination, indicated by lure discrimination index scores, was better for younger
than older adults. (b) Recognition, indicated by traditional recognition scores, did not differ between age groups. (c) Perceptual discrimination,
indicated by Perceptual Discrimination Index scores, did not differ between age groups. All panels: the y-axis labels indicate the formulae used to
compute the index scores. Colored points are individual participant probabilities, the widths of the half violin plots represent the proportion of
data at each probability, box plots show interquartile ranges and medians, white diamonds are means, and errors bars are 95% confidence
intervals
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Pearson's r correlation coefficients for ease of interpretation. Functional

connectivity matrices were then constrained to the 37 ROIs labeled in

the parcellation as being part of the DMN and the six hippocampal

regions—bilateral head, body, and tail—for the CPM analyses described

below (Table 2 contains MNI coordinates for each ROI). There was thus

one 43 � 43 functional connectivity matrix per participant. Note that

there would be no difference in connectivity values when generating

a connectivity matrix across all ROIs and then restricting an analysis

to a subset relative to only generating a connectivity matrix restricted

to a subset of ROIs. We chose the former to suit lab interests

unrelated to the current research questions. These functional connec-

tivity matrices are available on the OSF: https://osf.io/f6vg8/.

2.3.1 | Statistical approach for generating
connectivity matrices

CPMs were estimated using the NetworkToolbox package (version

1.4.2; Christensen, 2018) in R software. CPM constructs a

connectome that is significantly associated with a behavioral measure

via a leave-one-subject-out cross-validation approach (e.g., Finn

et al., 2015). Each behavioral measure used in CPM generates a spe-

cific connectome. Here, we generated a connectome for mnemonic

discrimination using the LDI score as the behavioral measure. Each

participant's resting-state data comprised the functional connectivity

matrix of ROIs described above, henceforth referred to as ROI–ROI

matrices. The CPM approach proceeded as follows. First, the ROI–

ROI matrix and mnemonic discrimination performance for one partici-

pant (i.e., the test participant) was separated from the remaining par-

ticipants (i.e., training participants). The training participants' ROI–ROI

matrices were then used to correlate each ROI–ROI element across

the matrices with their respective mnemonic discrimination perfor-

mance. To rule out artifactual relationships from age-related structural

brain differences, total intracranial volume, including gray matter,

white matter, and cerebrospinal fluid, was controlled when computing

correlations between ROI–ROI elements and LDI scores. These corre-

lations formed a single correlation matrix thresholded at α = .05 (Shen

et al., 2017).

Next, the thresholded matrix was separated into two masks that

comprised only significant positive or negative correlations. Creating

these separate masks allowed us to dissociate connectivity patterns

that were positively and negatively associated with mnemonic dis-

crimination. Each mask was separately applied to each training partici-

pant's ROI–ROI matrix, leaving only the connectivity values that were

significantly related to behavioral performance. For each participant,

sum totals of these remaining connectivity values were calculated for

each mask. These totals were then entered into separate regression

models to predict the training participants' mnemonic discrimination

performance.

The regression weights from these models were then used to pre-

dict the test participant's mnemonic discrimination. Using the test par-

ticipant's ROI–ROI matrix, sum scores from the positive and negative

masks were computed to estimate mnemonic discrimination for the

test participant by solving the respective regression equations. The

predicted LDI value from the positive mask is referred to as the posi-

tive prediction, and the predicted LDI value from the negative mask is

F IGURE 3 Intrinsic DMN connectivity predicting mnemonic
discrimination. A scatterplot showing the association between
predicted and observed Lure Discrimination Index scores
(standardized) based on the MDC for younger (blue) and older (red)

adults. Points are individual participants, the line is the best fitting
regression line, and the shaded region is the 95% confidence interval

F IGURE 4 Connections in the MDC. The MDC visualized from three orientations (left, top, right) using the BioImage suite web viewer:
https://bioimagesuiteweb.github.io/webapp/connviewer.html. To provide an interpretable connectome, the threshold for including ROIs here
was set at 20 or more connections. Images using other thresholds can be generated using the data provided on the OSF: https://osf.io/f6vg8/.
Larger node sizes (circles) indicate more inter-regional connections (lines)
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referred to as the negative prediction. This process repeated until all

participants served once as the test participant, thus producing two

predicted LDI values per participant. Finally, the connectome-

predicted and observed LDI values were correlated. A significant

correlation indicates that a set of connected ROIs (i.e., connectome)

had sufficient explanatory power for mnemonic discrimination

performance.

Note that our approach to constructing the ROI–ROI matrix used

to establish a predictive model of mnemonic discrimination ability did

not account for age group differences in intrinsic functional connec-

tivity in the model. This approach was intentional because it allowed

us to identify age-related differences in the extent to which particular

ROI–ROI connections predicted mnemonic discrimination perfor-

mance (see results below). But this approach could also lead to a

connectome driven mostly by age differences instead of individual

variation in mnemonic discrimination across the entire sample. To

account for age differences in the predictive validity of the

connectome, we conducted parallel analyses correlating the ROI–ROI

matrix with behavioral performance but also included age as a contin-

uous covariate (Hsu et al., 2018; Shen et al., 2017, see Supplemental

Information, section 1 [Appendix S1]).

3 | RESULTS

3.1 | Behavioral tasks

The MST response probabilities are displayed in Table S1 (top rows).

Mnemonic discrimination (Figure 2a) was significantly higher for

younger than older adults, t(60) = 3.27, p < .01, d = 0.84, and

traditional recognition (Figure 2b) did not differ between age groups,

t(60) = 0.19, p = .85, d = 0.05. The PDT response probabilities are

displayed in Table S1 (bottom rows). Perceptual discrimination

(Figure 2c) did not differ between age groups, t(60) = 0.12, p = .90,

(a)

(b)

(c)

F IGURE 5 Legend on next column.

F IGURE 5 Inter-regional connections. (a) The significant
connections among ROIs in the DMN identified in the MDC. ROI–ROI
connections were present in (black squares) or absent from (white
squares) the MDC. (b) Age differences in MDC connections. Blue
squares show ROI–ROI connections that were stronger for younger
than older adults. Connections that were significantly different
between age groups and survived FDR correction are indicated by
thicker black borders. (c) Age differences in DMN connections. Blue
squares show ROI–ROI connections that were stronger for younger
than older adults; red squares show greater connectivity for older
than younger adults. Connections that were significantly different
between age groups and survived FDR correction are indicated by
thicker black borders. (b,c) The color intensities of grid squares
indicate the degree of average differences in correlations between
LDI scores and ROI–ROI connections between younger and older
adults. All panels: ROIs are ordered anterior to posterior starting from
the left (x-axis) and bottom (y-axis). Axis labels correspond to the
codes in Table 2
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d = .03. Together, these results replicated the selective age-related

mnemonic discrimination deficit consistently shown in object-based

MSTs (for a review, see Stark et al., 2019) and indicated that percep-

tual processing abilities could not fully account for this deficit.

3.2 | Connectome-based predictive modeling

3.2.1 | DMN connectivity and mnemonic
discrimination

To test our primary hypothesis that DMN connectivity should predict

mnemonic discrimination, we used CPM to correlate predicted with

observed LDI scores. Supporting our hypothesis, the positive predic-

tion model was significant, r(60) = .39, p < .01 (see Figure 3), and

209 out of 903 possible connections (23%) significantly predicted

mnemonic discrimination. Controlling for white matter volume alone

(instead of total intracranial volume), produced a near-identical predic-

tive relationship, r(60) = 0.41, p < .01. More generally, these effect

sizes are comparable to those reported in previous studies using CPM

to predict behavior from intrinsic connectivity (e.g., Yoo et al., 2018).

Because leave-one-subject-out connectome estimations are not inde-

pendent, a permutation test was performed to assess the likelihood

that the positive prediction model emerged by chance. A null distribu-

tion was created by randomly shuffling observed LDI scores, rerun-

ning CPM, and computing 1000 correlations between predicted and

observed scores. There was a significant difference between the null

and positive prediction models, p < .01, indicating that the positive

prediction model was unlikely to have emerged by chance. The nega-

tive prediction model, which was not significant, r(60) = �.23,

p = .08, included 22 out of 903 possible significant connections (2%)

and is not considered further.

The connections among regions in the positive prediction model,

hereafter referred to as the mnemonic discrimination connectome

(MDC), are displayed in Figure 4 (glass brain format) and Figure 5a

(grid format). To summarize the locations of these connections, we

computed the proportion of connections out of all possible connec-

tions within and between four major regions (i.e., prefrontal, hippo-

campus, temporal, and parietal). In this approach, each proportion is

independent of the others. These summaries (Figure 6, top panels)

indicate that the relative proportion of connections was greatest

within the temporal cortex (panel a) and between the temporal cortex

(a) (b)

(c) (d)

F IGURE 6 Proportions of connections in the major regions of the MDC. Top panel: total proportions of connections within (a) and between
(b) regions. Bottom panel: proportions of regions showing significantly greater connectivity for younger than older adults that survived FDR
correction (c) within and (d) between regions. Proportions were computed separately within each region and between each pair of regions using
the total unique number of possible connections in each as the denominator. Therefore, the values above are independent of each other and can
all range from 0 to 1.0
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and other regions (panel b). Thus, the temporal regions of the DMN

were the most densely connected in the MDC.

Next, we established the specificity of intrinsic DMN connectivity

in predicting mnemonic discrimination. If the DMN connectivity in the

MDC is specifically related to performance on the measure assessing

the mechanisms supporting mnemonic discrimination, then the MDC

should not predict performance on measures supported by non-

identical mechanisms. This outcome would be unsurprising because

the mask is defined by its ability to predict mnemonic discrimination

(Kriegeskorte et al., 2009). This analysis provides an essential sanity

check confirming that the MDC was established properly. Figure 7

(top panels) shows that the MDC did not significantly predict scores

on indices of recognition memory (panel a, r(60) = �0.18, p = .15) or

perceptual discrimination (panel b, r(60) = 0.11, p = .39).

We also examined whether intrinsic DMN connectivity selec-

tively predicted mnemonic discrimination by applying CPM to rec-

ognition and perceptual discrimination scores. This established

whether a behavior-specific connectome could be identified for

such indices. Given our primary focus on the significant positive

prediction model for LDI scores (i.e., the MDC), we focus here only

on positive prediction models for recognition and perceptual

discrimination. Figure 7 (bottom panels) shows that connectomes

built from intrinsic DMN connectivity did not have sufficient

explanatory power to predict scores on recognition (panel c, r

(60) = �0.01, p = .93) or perceptual discrimination (panel d, r

(60) = 0.10, p = .43) indices. Collectively, these results indicate that

intrinsic DMN connectivity selectively predicted mnemonic

discrimination.

3.2.2 | Hippocampal connectivity in the MDC

As described in the Introduction, the MST has primarily been used to

examine the relationship between hippocampal function and mne-

monic discrimination. To highlight the connectivity involving the hip-

pocampus in the MDC, we explored the inter-region connections

originating from the head, body, and tail of the hippocampus in both

hemispheres (Figure 8). The connectivity was greatest for the left hip-

pocampal head with 11 connections and the right hippocampal body

region with 10 connections. Across all divisions of the hippocampus,

most connections emerged with temporal (14) and prefrontal

(13) regions.

� � � � � �

� � � � � �

(a) (b)

(c) (d)

F IGURE 7 Intrinsic functional DMN connectivity predicting recognition and perceptual discrimination. Scatterplots showing the association
between predicted and observed traditional recognition (a,c) and perceptual discrimination index (b,d) scores (standardized). Top panel:
associations including predicted scores based on the MDC. Bottom panel: associations including predicted scores based on connectomes created
for recognition and perceptual discrimination based on intrinsic DMN connectivity. Points are individual participants (younger = blue;
older = red), the lines are the best fitting regression lines, and the shaded regions are 95% confidence intervals
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3.2.3 | Age differences in MDC connection
strength

Our secondary aim was to examine if intrinsic DMN connectivity in

the CPM predicted mnemonic discrimination more strongly for youn-

ger than older adults. We tested for such differences by summing all

MDC connections and comparing those values between age groups

with a two-sample t-test. This measure of connection strength was

significantly greater for younger (M = 54.05, SD = 12.78) than older

(M = 36.83, SD = 14.56) adults, t(60) = 4.96, p < .001, d = 1.26. To

determine if this difference was due to chance, we performed a per-

mutation test. We first created a null distribution of t-statistics based

on strength differences between age groups by computing 1000 ran-

dom connectomes with ROIs including the original MDC connections.

The t-statistic from the MDC (4.96) was greater than the upper bound

of the null distribution (range = 3.64–4.63, M = 4.12, SD = 0.19),

suggesting that younger adults' greater connection strength was not

likely due to chance.

To identify the locations of age differences in the MDC, we used

two-sample t-tests to compare the strength of each ROI–ROI connec-

tion between age groups (Figure 5b). Out of the 209 possible connec-

tions, 22 (11%) showed greater strength for younger than older adults

and survived false discovery rate (FDR) correction (cells with thicker

borders). The stronger connections for younger adults were mostly

within the temporal cortex (Figure 6c) and between the temporal and

prefrontal cortex (Figure 6d).

Finally, baseline connectivity in the DMN is sometimes stronger

for younger than older adults (e.g., Andrews-Hanna et al., 2010),

suggesting that the age differences in MDC connectivity strength

here partly reflected differences in baseline DMN connectivity. We

examined the role of DMN connectivity strength in age-related MDC

connectivity differences by comparing ROI–ROI connection strength

in the DMN between age groups (Figure 5c). Younger adults showed

significantly stronger average connectivity strength that survived FDR

correction in 62 connections between regions across the DMN (cells

with thicker borders). Of these differences, 22 (35.5%) were connec-

tions within the MDC (Figure 5b). These results suggest that younger

adults' stronger baseline DMN connectivity partly contributed to their

stronger connectivity among regions that predicted mnemonic

discrimination.

4 | DISCUSSION

Discriminating existing memories from similar sensory inputs to

encode unique representations and mitigate downstream interference

is a core feature of episodic memory. Although studies examining the

neural mechanisms of mnemonic discrimination have focused

(a) (b) (c)

F IGURE 8 Inter-region connectivity from regions of the hippocampus in the MDC. Top two rows: connections from the hippocampal head
(a), body (b), and tail (c) visualized using the BioImage suite web viewer: https://bioimagesuiteweb.github.io/webapp/connviewer.html. The
threshold for including ROIs here was set at one or more connections. Images using other thresholds can be generated using the data provided on
the OSF: https://osf.io/f6vg8/. Larger node sizes (circles) indicate more connections (lines) from each hippocampal region to others in the MDC.
Bottom row: summaries displaying the numbers of connections from each hippocampal region
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primarily on hippocampal structure and function (for a review, see

Stark et al., 2019), regions beyond the hippocampus may also support

this ability (Nash et al., 2021; Pidgeon & Morcom, 2016; Reagh

et al., 2014; Wais et al., 2017). The present study contributes to this

nascent literature by characterizing the relationship between intrinsic

functional connectivity among DMN regions and mnemonic discrimi-

nation ability. Using a data-driven connectomics approach (Shen

et al., 2017), we showed that interindividual differences in connectiv-

ity among DMN regions predicted mnemonic discrimination. This rela-

tionship primarily comprised connections with temporal cortex.

Furthermore, the better mnemonic discrimination shown by younger

than older adults was primarily predicted by areas with stronger

temporal–prefrontal connectivity in younger than older adults. These

results suggest that mnemonic discrimination is supported by connec-

tivity across DMN regions including, but not limited to, the

hippocampus.

The predictive relationship between DMN connectivity and mne-

monic discrimination is consistent with results implicating such connectiv-

ity in episodic memory functions (Andrews-Hanna et al., 2010; Spreng &

Grady, 2010). DMN subregions, such as medial prefrontal and tempo-

ropolar cortex, are presumably involved in mnemonic functions

(Kim, 2016; Sestieri et al., 2011). Consistent with these findings, connec-

tivity among such regions predicted mnemonic discrimination here. Spe-

cifically, connections positively related to mnemonic discrimination were

broadly distributed across prefrontal, hippocampal, temporal, and parietal

regions. These findings suggest that broad cortical connections support

mnemonic functions commonly attributed to hippocampal and adjacent

connections in the medial temporal lobes (for a review, see Stark

et al., 2019). Most predictive connections within and between these

regions emerged within temporal cortex between regions around the

temporal pole. Such associations are reminiscent of findings implicating

anterior temporal activity in semantic representations (Pobric et al., 2007)

and showing deficits in object naming and recognition associated with

temporal pole atrophy (Kumfor et al., 2015; Mummery et al., 2000).

The present findings also suggest that the strength of intrinsic

DMN connections involving regions of the anterior temporal cortex

may support the ability to distinguish between everyday objects with

shared features. These findings accord with views emphasizing that

anterior temporal regions mediate the representations of object iden-

tities (Ranganath & Ritchey, 2012), and extends such views by empha-

sizing the importance of functional interactions among regions that do

not selectively support a single task. Importantly, we do not interpret

the present findings as suggesting that pattern separation computa-

tions occur in extrahippocampal cortical regions per se. Instead, we

suggest that networks comprising cortical regions that communicate

with the hippocampus may indirectly support pattern separation per-

formed by hippocampal regions. This could occur, for example, if such

cortical-hippocampal networks support the encoding of high-fidelity

representations that enable comparison with and rejection of similar

lures via a recall-to-reject mechanism (cf. Bowman & Dennis, 2016;

Norman & O'Reilly, 2003).

Following this suggestion, one could predict a key role for con-

nectivity between the hippocampus and parietal regions in mnemonic

discrimination. Indeed, the prominent structural and functional con-

nectivity between the hippocampus and parietal regions has led some

to suggest that there is a “parietal memory network” within the DMN

that supports episodic memory (Vincent et al., 2006; Zheng et al.,

2021). Although network connections of this kind could potentially

enable a recall-to-reject mechanism, the present results showed

greater connectivity strength of predictive connections within more

anterior than posterior DMN regions. These findings are consistent

with accounts positing that an anterior-temporal DMN subnetwork

preferentially supports memory for items and features of items

(Johnson et al., 2021; Ranganath & Ritchey, 2012; Reagh et al., 2018;

Ritchey et al., 2015), and implies that memory for contextual features

associated with items representations supported by posterior DMN

connections (cf. Ranganath & Ritchey, 2012) contribute less to pro-

cesses leading to mnemonic discrimination, at least in task variants

using objects as stimuli.

Consistent with the view that hippocampal pattern separation

processes may interact with cortical processes to support mnemonic

discrimination, weaker functional connectivity between the anterior

hippocampus and parahippocampal cortex during MST performance

has been associated with poorer mnemonic discrimination in older

adults (Stark et al., 2021). The present findings are consistent with this

result in that functional connectivity between the anterior hippocam-

pus and cortical regions of the DMN showed the clearest age-related

differences. However, differing from earlier findings, the present

results suggest that intrinsic relationships in activity among DMN

regions, even at rest, predict the ability to discriminate sensory inputs

from stored representations in the service of preventing catastrophic

memory interference. The prominent anterior cortical connections in

the MDC suggest that functional interactions between anterior tem-

poral and prefrontal regions may play critical roles in mnemonic dis-

crimination ability and have important interactions with anterior

portions of the hippocampus. The nature and extent of these relation-

ships are ideal targets for future studies of mnemonic discrimination.

It is also noteworthy that DMN connections predicted mnemonic

discrimination but did not predict perceptual discrimination or tradi-

tional recognition. The absence of DMN connections predicting per-

ceptual discrimination suggests more specific DMN involvement in

mnemonic processes than visual processing of feature differences

between objects. Given that traditional recognition is clearly an aspect

of episodic memory, it is perhaps surprising that DMN connections

did not predict that ability. However, the processes involved in mne-

monic discrimination and traditional recognition are not identical,

suggesting that specific types of episodic memory processes are

supported by intrinsic DMN connectivity. Indeed, the exact neural

mechanisms underlying these memory processes are likely distinct

(Aggleton & Brown, 2006). One possibility to be explored in future

research is whether intrinsic connections between the DMN and other

brain networks predict traditional recognition. Consistent with this

possibility, intra-network connections have been linked to cognitive

abilities, such as verbal and visual creativity (Zhu et al., 2017).

The present study provides an innovative contribution to the

mnemonic discrimination literature because it is the first to our
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knowledge to use a connectomics approach to identify the neural

mechanisms associated with individual differences in mnemonic dis-

crimination ability. The CPM approach enabled exploratory analyses

extending beyond traditional whole-brain activation patterns.

Although CPM is usually applied to whole-brain connectivity (Shen

et al., 2017), we took a more targeted, theoretically motivated

approach by examining functional connectivity among DMN regions

including the hippocampus. Importantly, this reduced the number of

ROIs in the connectome, thus allowing for more precise assessments

of brain-behavior associations, such as identifying age differences in

mnemonic discrimination ability predicted by connectivity strength in

anterior, medial, and posterior regions of the DMN.

The greater predictive strength of the MDC for younger than older

adults suggested that older adults have less defined DMN coactivation

predicting mnemonic discrimination. Older adults also showed weaker

overall baseline DMN connectivity than younger adults, including the

connections in the MDC. Dysfunctional circuitry among DMN regions

associated with healthy aging is also associated with episodic memory

deficits (Staffaroni et al., 2018) and more specific age-related deficits in

mnemonic discrimination (Bakker et al., 2012; Reagh et al., 2018; Yassa,

Lacy, et al., 2011; Yassa, Mattfeld, et al., 2011). The present findings

thus suggest that poorer baseline network cohesion may be less predic-

tive of behavior under the CPM approach.

The above-described MDC revealed DMN connections predictive

of the wide range of mnemonic discrimination performance expected

across younger and older adults. Similar methods have been recently

used to capture connectomes predicting behavior across different

groups (e.g., Hsu et al., 2018). Other recent studies have included

group-distinguishing covariates in CPM to determine connections pre-

dictive of behavior beyond group differences (e.g., Hsu et al., 2018;

Kardan et al., 2021). Our approach combined these methods. Whereas

the above-described MDC revealed overall predictive connections, an

age-controlled MDC revealed connections predicting mnemonic dis-

crimination that should not be attributable to age. The fact that an

age-controlled CPM significantly predicted mnemonic discrimination

indicates that age was not the only reason why the original MDC

emerged.

We also found that the age-controlled MDC connections that

overlapped with the original MDC connections comprised over half

the total original connections. Thus, the majority of the predictive

connections in the MDC could not be solely attributed to age differ-

ences. In addition, almost 90% of the connections in the age-

controlled MDC were present in the original MDC. This indicated that

the age-controlled MDC was largely a subset of the original MDC and

not a completely independent set of predictive DMN connections.

Future work could compare original to group-controlled MDCs to fur-

ther identify which predictive connections are driven primarily by

group status. However, there is not yet a standardized approach for

making such comparisons (see, for example, Hsu et al., 2018).

A key translational application of the CPM approach is to detect

cognitive impairments associated with Alzheimer's disease from pat-

terns of intrinsic whole-brain connectivity (Lin et al., 2018). The MDC

established here in a visual object recognition paradigm could serve as

a biomarker of normal and pathological cognitive decline. This possi-

bility is based on research showing that impaired visual object discrim-

ination is associated with mild cognitive impairment and Alzheimer's

disease (Gaynor et al., 2019) as well as beta-amyloid protein deposi-

tion, which is an earlier indicator of Alzheimer's disease pathology

(Webb et al., 2020). If the MDC predicts Alzheimer's risk in older

adults, it could potentially be used as an early indicator of eventual

conversion. This direction is especially promising if neural predictors

of mnemonic discrimination ability can be obtained from brief resting-

state scans.

The present study had some limitations. First, resting-state

functional connectivity data is susceptible to contamination from

uncontrolled sources of variability (e.g., participant respiration).

Although we accounted for this using a conservative

preprocessing method that partly controls for such variability

(Hughes et al., 2019), future work could also include physiological

measures as regressors in comparable analyses. Second, although

the current sample size is comparable to related work

(Klippenstein et al., 2020), more reliable estimates between intrin-

sic connectivity and behavior can be derived from larger samples

than we tested here (Betzel et al., 2014; Biswal et al., 2010).

Finally, although our focus on DMN connectivity was theoretically

motivated, communication among networks may also predict

mnemonic discrimination (e.g., Beaty et al., 2018). Given that

mnemonic discrimination requires visual acuity, future CPM

approaches could include multiple networks (e.g., sensory and

attention networks with the DMN) to identify between-network

interactions that predict mnemonic discrimination ability.

To conclude, the present study was the first to leverage a con-

nectomics approach to examine the association between individual

variation in intrinsic functional connectivity among DMN regions and

mnemonic discrimination of visual objects. The MDC established here

showed that intrinsic connections within and between temporal, pre-

frontal, parietal, and hippocampal regions at rest predicted mnemonic

discrimination ability. Such relationships indicate clearly that a com-

prehensive explanation of the neural mechanisms of mnemonic dis-

crimination requires widening the focus beyond the medial temporal

lobes and adjacent subcortical structures to examine broader cortical

networks including those structures.
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